Assessment Schedule - 2007

Calculus: Integrate functions and use integrals to solve problems (90636)

Evidence Statement

	Achievement Criteria	Q.	Evidence	Code	Judgement	Sufficiency
	functions and use integrals to solve problems.	1a	$\frac{\csc 3x}{3} + c \text{ or } \frac{1}{3\sin 3x} + c$	A1	Or equivalent	Achievement:
		1b	$\frac{5}{3}\ln \mathbf{k}x $ or $\frac{5}{3}\ln x +c$ or $\ln \mathbf{k}\sqrt[3]{x^5} $ etc	A1	Or equivalent. Absolute value sign not	THREE of Code A including
		2	$Vol = \pi \int_{0}^{4} \left(\frac{x^2}{12} + 1\right)^2 dx$		necessary.	at least ONE Code A1 and
			$= \pi \int_{0}^{4} \left(\frac{x^4}{144} + \frac{x^2}{6} + 1 \right) dx$ $= \pi \left[\frac{x^5}{720} + \frac{x^3}{18} + x \right]_{0}^{4}$	A1	Must show integrated function.	ONE Code A2.
			$= \pi \left(1.42 + 3.55 + 4 \right)$ $= \frac{404\pi}{45} = 8\frac{44}{45}\pi = 8.977\pi = 28.20$	or A2	Must show ∂ at least once Or equivalent.	
		3	$\int 4y dy = \int \cos 2x dx$			
ACHIEVEMENT			$2y^{2} = \frac{\sin 2x}{2} + c$ when $x = \frac{\partial}{\partial x}$, $y = 2$ then $c = 7.75$	A1 or		
ACHIEV			when $x = \frac{12}{12}$, $y = 2$ then $c = 7.75$ $2y^2 = \frac{\sin 2x}{2} + 7.75 \text{ or } 8y^2 = 2\sin 2x + 31$	A2	Or equivalent.	
		4	$v = \int \frac{320000}{16000 - 400t} \mathrm{d}t$			
			$= -800 \ln 16000 - 400t + c$ when $t = 0$, $v = 0$ then $c = 7744.3$	A1 or	Must show equation for <i>v</i> .	
			or c = 800 ln 16000 $v = -800 \ln 16000 - 400t + 7744.3$			
			$v(30) = -800 \ln 4000 + 7744.3$ $= 1109.035$	A2	Or equivalent.	
			or $v = \int \frac{800}{40 - t} dt = -800 \ln 40 - t + c$ when $t = 0$, $v = 0$ then $c = 2951.1$			
			$v(30) = -800 \ln 10 + 2951.1$ = 1109.035			
			For 1600 – 40t, c = 5902.2 For 160 – 4t, c = 4060.1			

	Achievement Criteria	No.	Evidence	Code	Judgement	Sufficiency
	Use advanced integration techniques to find integrals and solve problems.		$\frac{1}{3}\ln\left e^{3x} + 9x\right + c \text{ or } \frac{1}{3}\ln\left k\left(e^{3x} + 9x\right)\right $ $V = \int \frac{6400}{\sqrt{1 + 20t}} dt$	A1 M	Absolute value signs not needed.	Merit: Achievement Plus
			$= 640\sqrt{1+20t} + c$ when $t = 0$, $V = 840$ then $c = 200$ $V = 640\sqrt{1+20t} + 200$	A1	Must show integrated function.	THREE of Code M
			$V = 640\sqrt{1 + 20t + 200}$ When t = 6, $V = 640\sqrt{1 + 120} + 200$ $= 7240 \text{ cm}^3$	A2 M	Units not required.	FOUR of Code M
		7	Area = $\int_0^{\frac{\pi}{6}} (2\sin 5x \cos 3x) dx$			
MERIT			$= \int_0^{\frac{\pi}{6}} (\sin 8x + \sin 2x) dx$ $= \left[-\frac{\cos 8x}{8} - \frac{\cos 2x}{2} \right]_0^{\frac{\pi}{6}}$ $= \frac{1}{16} - \frac{1}{4} + \frac{1}{8} + \frac{1}{2}$ $= -\frac{3}{16} + \frac{5}{8} = -0.1875 + 0.625$ $= \frac{7}{16} = 0.4375$	A1 or A2 M	Must show integrated function. Or equivalent.	
		8	$\frac{dP}{dt} = kP$ $\int \frac{1}{P} dP = \int kdt$ $\ln cP = kt$ $P = Ae^{kt}$ $(0,100) \text{ gives } A = 100$ $(1,105) \text{ gives } k = \ln 1.05 = 0.04879$			
			$P = 100e^{\ln 1.05t}$ When $P = 200$, $t = \frac{\ln 2}{\ln 1.05}$ Population will double in 14.2 years. (Double to 210 gives 15.2 years)	A2 M	Or equivalent.	

	Achievement Criteria	No.	Evidence	Code	Judgement	Sufficiency
EXCELLENCE	Solve more complex integration problem(s).	9	$y = 9 - x^{2}$ $x^{2} = 9 - y$ $Vol = \pi \int_{0}^{6} (9 - y) dy$ $= \pi \left[9y - \frac{y^{2}}{2} \right]_{0}^{6}$ $= 36\pi = 113.1 \text{ cubic units}$ Inverted shape $y = x^{2}$ Same volume of liquid. $36\pi = \pi \int_{0}^{h} y dy$ $= \partial \left[\frac{y^{2}}{2} \right]_{0}^{h}$ $36 = \frac{h^{2}}{2}$ $h = \sqrt{72} = 8.485 \text{ cm or } 6\sqrt{2} \text{ cm}$	A2 M or	Units not required. Must use ∂ correctly Must show both integrals Or equivalent.	Excellence: Merit plus Code E

Question 5 by substitution

$$u = e^{3x} + 9x$$

$$\frac{du}{dx} = 3e^{3x} + 9$$

$$= 3(e^{3x} + 3)$$

$$(e^{3x} + 3)dx = \frac{du}{3}$$

$$\int \frac{e^{3x} + 3}{e^{3x} + 9x} dx = \int \frac{1}{u} \frac{du}{3}$$

$$= \frac{1}{3} \ln u$$

$$= \frac{1}{3} \ln |k(e^{3x} + 9)|$$

Question 6 by substitution

$$V = \int \left(\frac{6400}{\sqrt{1+20t}}\right) dt$$

$$U = 1 + 20t$$

$$du = 20dt$$

$$dt = \frac{du}{20}$$

$$V = \int \frac{6400}{u^{2} + c} dt$$

$$U = 1 + 20t$$

$$u = \sqrt{(1+20t)}$$

$$u^{2} = 1 + 20t$$

$$2udu = 20dt$$

$$dt = \frac{udu}{10}$$

$$V = \int \frac{6400}{u} \frac{du}{10}$$

$$V = \int \frac{6400}{u} \frac{udu}{10}$$

Judgement Statement

Achievement	Achievement with Merit	Achievement with Excellence
Integrate functions and use integrals to solve problems.	Use advanced integration techniques to find integrals and solve problems.	Solve more complex integration problems(s).
$3 \times A$ including at least $1 \times A1$ and $1 \times A2$	Achievement plus $3 \times M$ or $4 \times M$	Merit plus 1 × E

The following Mathematics specific marking conventions may also have been used when marking this paper:

- Errors are circled.
- Omissions are indicated by a caret (A).
- NS may have been used when there was not sufficient evidence to award a grade.
- CON may have been used to indicate 'consistency' where an answer is obtained using a prior, but incorrect answer and NC if the answer is not consistent with wrong working.
- CAO is used when the 'correct answer only' is given and the assessment schedule indicates that more evidence was required.
- # may be used when a correct answer is obtained but then further (unnecessary) working results in an incorrect final answer being offered.
- RAWW indicates right answer, wrong working.
- **R** for 'rounding error' and **PR** for 'premature rounding' resulting in a significant round-off error in the answer (if the question required evidence for rounding).
- U for incorrect or omitted units (if the question required evidence for units).
- MEI may have been used to indicate where a minor error has been made and ignored.